Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.268
Filtrar
1.
BMC Infect Dis ; 24(1): 373, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565980

RESUMEN

BACKGROUND: Bloodstream infections (BSI) are the major cause of morbidity and mortality in children in developing countries. The purpose of the current study was to establish the antimicrobial susceptibility pattern of bacterial isolates from bloodstream infections at Children's Medical Center Hospital (CMC), Tehran, Iran. METHODS: We retrospectively recorded all positive blood cultures and antimicrobial susceptibility of all bloodstream isolates among children admitted to CMC, during 5 years. Specimen culture, bacterial identification, and antimicrobial susceptibility testing were performed according to standard laboratory methods. RESULTS: From 3,179 pathogens isolated from the blood cultures 2,824 bacteria were cultured, with 1,312 cases being identified as Gram-positive bacteria (46%) and 1,512 cases as Gram-negative bacteria (54%). The most common Gram-negative bacteria isolated were as follows: Pseudomonas spp. (n = 266, 17.6%), Klebsiella pneumoniae (n = 242, 16%), Stenotrophomonas maltophilia (n = 204, 13.5%), Enterobacter spp. (n = 164, 10.8%), Escherichia coli (n = 159, 10.5%), Pseudomonas aeruginosa (n = 126, 8.3%), Serratia marcescens (n = 121, 8%), and Acinetobacter baumannii (n = 73, 4.8%). The most common Gram-positive bacteria isolated were coagulase-negative staphylococci (CONS) (n = 697, 53%), Streptococcus spp. (n = 237, 18%), Staphylococcus aureus (n = 202, 15%) and Enterococcus spp. (n = 167, 12.7%). 34% of bacterial strains were isolated from ICUs. The rates of methicillin resistance in S. aureus and CONS were 34% and 91%, respectively. E. coli isolates showed high resistance to cefotaxime (84%). All isolates of K. pneumoniae were susceptible to colistin and 56% were susceptible to imipenem. P. aeruginosa isolates showed high susceptibility to all antibiotics. CONCLUSIONS: Our findings emphasize the need of clinicians having access to up-to-date bacterial susceptibility data for routinely prescribed drugs. Continuous monitoring of changes in bacterial resistance will aid in the establishment of national priorities for local intervention initiatives in Iran. The increased risk of BSI caused by antibiotic-resistant organisms, emphasizes the significance of implementing appropriate antibiotic prescribing regulations and developing innovative vaccination techniques in Iran.


Asunto(s)
Bacteriemia , Sepsis , Infecciones Estafilocócicas , Humanos , Niño , Antibacterianos/farmacología , Irán/epidemiología , Staphylococcus aureus , Escherichia coli , Estudios Retrospectivos , Bacteriemia/epidemiología , Bacteriemia/microbiología , Farmacorresistencia Bacteriana , Bacterias , Bacterias Gramnegativas , Bacterias Grampositivas , Staphylococcus , Pseudomonas aeruginosa , Klebsiella pneumoniae , Pseudomonas , Derivación y Consulta , Hospitales , Pruebas de Sensibilidad Microbiana
2.
Appl Microbiol Biotechnol ; 108(1): 294, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598011

RESUMEN

Understanding the dynamic change in abundance of both fecal and opportunistic waterborne pathogens in urban surface water under different abiotic and biotic factors helps the prediction of microbiological water quality and protection of public health during recreational activities, such as swimming. However, a comprehensive understanding of the interaction among various factors on pathogen behavior in surface water is missing. In this study, the effect of salinity, light, and temperature and the presence of indigenous microbiota, on the decay/persistence of Escherichia coli and Pseudomonas aeruginosa in Rhine River water were tested during 7 days of incubation with varying salinity (0.4, 5.4, 9.4, and 15.4 ppt), with light under a light/dark regime (light/dark) and without light (dark), temperature (3, 12, and 20 °C), and presence/absence of indigenous microbiota. The results demonstrated that light, indigenous microbiota, and temperature significantly impacted the decay of E. coli. Moreover, a significant (p<0.01) four-factor interactive impact of these four environmental conditions on E. coli decay was observed. However, for P. aeruginosa, temperature and indigenous microbiota were two determinate factors on the decay or growth. A significant three-factor interactive impact between indigenous microbiota, temperature, and salinity (p<0.01); indigenous microbiota, light, and temperature (p<0.01); and light, temperature, and salinity (p<0.05) on the decay of P. aeruginosa was found. Due to these interactive effects, caution should be taken when predicting decay/persistence of E. coli and P. aeruginosa in surface water based on a single environmental condition. In addition, the different response of E. coli and P. aeruginosa to the environmental conditions highlights that E. coli monitoring alone underestimates health risks of surface water by non-fecal opportunistic pathogens, such as P. aeruginosa. KEY POINTS: Abiotic and biotic factors interactively affect decay of E. coli and P. aeruginosa E.coli and P.aeruginosa behave significantly different under the given conditions Only E. coli as an indicator underestimates the microbiological water quality.


Asunto(s)
Escherichia coli , Pseudomonas aeruginosa , Ríos , Heces , Agua Dulce
3.
BMC Infect Dis ; 24(1): 378, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582858

RESUMEN

INTRODUCTION: Carbapenem-resistant gram-negative bacilli are a worldwide concern because of high morbidity and mortality rates. Additionally, the increasing prevalence of these bacteria is dangerous. To investigate the extent of antimicrobial resistance and prioritize the utility of novel drugs, we evaluated the molecular characteristics and antimicrobial susceptibility profiles of carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii in Ecuador in 2022. METHODS: Ninety-five clinical isolates of carbapenem non-susceptible gram-negative bacilli were collected from six hospitals in Ecuador. Carbapenem resistance was confirmed with meropenem disk diffusion assays following Clinical Laboratory Standard Institute guidelines. Carbapenemase production was tested using a modified carbapenemase inactivation method. Antimicrobial susceptibility was tested with a disk diffusion assay, the Vitek 2 System, and gradient diffusion strips. Broth microdilution assays were used to assess colistin susceptibility. All the isolates were screened for the blaKPC, blaNDM, blaOXA-48, blaVIM and blaIMP genes. In addition, A. baumannii isolates were screened for the blaOXA-23, blaOXA-58 and blaOXA-24/40 genes. RESULTS: Carbapenemase production was observed in 96.84% of the isolates. The blaKPC, blaNDM and blaOXA-48 genes were detected in Enterobacterales, with blaKPC being predominant. The blaVIM gene was detected in P. aeruginosa, and blaOXA-24/40 predominated in A. baumannii. Most of the isolates showed co-resistance to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. Both ceftazidime/avibactam and meropenem/vaborbactam were active against carbapenem-resistant gram-negative bacilli that produce serin-carbapenemases. CONCLUSION: The epidemiology of carbapenem resistance in Ecuador is dominated by carbapenemase-producing K. pneumoniae harbouring blaKPC. Extensively drug resistant (XDR) P. aeruginosa and A. baumannii were identified, and their identification revealed the urgent need to implement strategies to reduce the dissemination of these strains.


Asunto(s)
Carbapenémicos , beta-Lactamasas , Humanos , Carbapenémicos/farmacología , Meropenem , Epidemiología Molecular , Ecuador/epidemiología , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Bacterias Gramnegativas/genética , Klebsiella pneumoniae/genética , Pseudomonas aeruginosa/genética
4.
J Wound Care ; 33(Sup4a): xcix-cx, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38588056

RESUMEN

Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.


Asunto(s)
Nanopartículas , Infecciones Estafilocócicas , Infección de Heridas , Humanos , Biopelículas , Staphylococcus aureus , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Pseudomonas aeruginosa , Nanopartículas/uso terapéutico , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
5.
J Med Chem ; 67(7): 5721-5743, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38564271

RESUMEN

With the increasing problem of bacterial resistance to traditional antibiotics, there is an urgent need for new antibacterial agents with novel mechanisms to treat infections caused by drug-resistant bacteria. In this paper, we designed and synthesized 2-phenoxyalkylhydrazide benzoxazole derivatives and evaluated their quorum sensing inhibition activity. Among them, 26c at a concentration of 102.4 µg/mL not only inhibited the production of pyocyanin and rhamnolipid by 45.6% and 38.3%, respectively, but also suppressed 76.6% of biofilm production at 32 µg/mL. In addition, 26c did not affect bacterial growth, but in a mouse model infected with P. aeruginosa PAO1, it could help ciprofloxacin effectively eliminate the living bacteria. In the targeting experiment, 26c could inhibit the fluorescence intensity of PAO1-lasB-gfp and PAO1-pqsA-gfp in a concentration-dependent manner, indicating that the compound acts on the quorum sensing system. Overall, 26c is worthy of further investigation as a quorum sensing inhibitor with strong antibiofilm effect.


Asunto(s)
Biopelículas , Percepción de Quorum , Animales , Ratones , Antibacterianos/farmacología , Bacterias , Pseudomonas aeruginosa , Factores de Virulencia
6.
Microbiol Res ; 283: 127707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582011

RESUMEN

Salinity stress badly restricts the growth, yield and quality of vegetable crops. Plant growth-promoting rhizobacteria (PGPR) is a friendly and effective mean to enhance plant growth and salt tolerance. However, information on the regulatory mechanism of PGPR on vegetable crops in response to salt stress is still incomplete. Here, we screened a novel salt-tolerant PGPR strain Pseudomonas aeruginosa HG28-5 by evaluating the tomatoes growth performance, chlorophyll fluorescence index, and relative electrolyte leakage (REL) under normal and salinity conditions. Results showed that HG28-5 colonization improved seedling growth parameters by increasing the plant height (23.7%), stem diameter (14.6%), fresh and dry weight in the shoot (60.3%, 91.1%) and root (70.1%, 92.5%), compared to salt-stressed plants without colonization. Likewise, HG28-5 increased levels of maximum photochemical efficiency of PSII (Fv/Fm) (99.3%), the antioxidant enzyme activities as superoxide dismutase (SOD, 85.5%), peroxidase (POD, 35.2%), catalase (CAT, 20.6%), and reduced the REL (48.2%), MDA content (41.3%) and ROS accumulation in leaves of WT tomatoes under salt stress in comparison with the plants treated with NaCl alone. Importantly, Na+ content of HG28-5 colonized salt-stressed WT plants were decreased by15.5% in the leaves and 26.6% in the roots in the corresponding non-colonized salt-stressed plants, which may be attributed to the higher K+ concentration and SOS1, SOS2, HKT1;2, NHX1 transcript levels in leaves of colonized plants under saline condition. Interestingly, increased abscisic acid (ABA) content and upregulation of ABA pathway genes (ABA synthesis-related genes NCED1, NCED2, NCED4, NECD6 and signal genes ABF4, ABI5, and AREB) were observed in HG28-5 inoculated salt-stressed WT plants. ABA-deficient mutant (not) with NCED1 deficiency abolishes the effect of HG28-5 on alleviating salt stress in tomato, as exhibited by the substantial rise of REL and ROS accumulation and sharp drop of Fv/Fm in the leaves of not mutant plants. Notably, HG28-5 colonization enhances tomatoes fruit yield by 54.9% and 52.4% under normal and saline water irrigation, respectively. Overall, our study shows that HG28-5 colonization can significantly enhance salt tolerance and improved fruit yield by a variety of plant protection mechanism, including reducing oxidative stress, regulating plant growth, Na+/K+ homeostasis and ABA signaling pathways in tomato. The findings not only deepen our understanding of PGPR regulation plant growth and salt tolerance but also allow us to apply HG28-5 as a microbial fertilizer for agricultural production in high-salinity areas.


Asunto(s)
Alphaproteobacteria , Solanum lycopersicum , Pseudomonas aeruginosa/metabolismo , Tolerancia a la Sal , Especies Reactivas de Oxígeno , Homeostasis , Ácido Abscísico/metabolismo , Antioxidantes , Transducción de Señal
7.
Sci Rep ; 14(1): 7971, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575637

RESUMEN

This study was divided into two parts. The first part involved the isolation, and detection of the prevalence and antimicrobial resistance profile of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio species from Nile tilapia fish and marine aquatic water. One hundred freshly dead Nile tilapia fish were collected from freshwater aquaculture fish farms located in Al-Abbassah district, Sharkia Governorate, and 100 samples of marine aquatic water were collected from fish farms in Port Said. The second part of the study focused on determining the in vitro inhibitory effect of dual-combination of AgNPs-H2O2 on bacterial growth and its down regulatory effect on crucial virulence factors using RT-PCR. The highest levels of A. hydrophila and P. aeruginosa were detected in 43%, and 34% of Nile tilapia fish samples, respectively. Meanwhile, the highest level of Vibrio species was found in 37% of marine water samples. Additionally, most of the isolated A. hydrophila, P. aeruginosa and Vibrio species exhibited a multi-drug resistance profile. The MIC and MBC results indicated a bactericidal effect of AgNPs-H2O2. Furthermore, a transcriptional modulation effect of AgNPs-H2O2 on the virulence-associated genes resulted in a significant down-regulation of aerA, exoU, and trh genes in A. hydrophila, P. aeruginosa, and Vibrio spp., respectively. The findings of this study suggest the effectiveness of AgNPs-H2O2 against drug resistant pathogens related to aquaculture.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Nanopartículas del Metal , Animales , Peróxido de Hidrógeno/farmacología , Plata/farmacología , Explotaciones Pesqueras , Antibacterianos/farmacología , Pseudomonas aeruginosa/genética , Agua/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Aeromonas hydrophila
8.
Appl Microbiol Biotechnol ; 108(1): 286, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578301

RESUMEN

Ultraviolet-C light-emitting diodes (UV-C LEDs) are an emerging technology for decontamination applications in different sectors. In this study, the inactivation of bacterial biofilms was investigated by applying an UV-C LED emitting at 280 nm and by measuring both the influence of the initial cell density (load) and presence of an extracellular matrix (biofilm). Two bacterial strains exposing diverging matrix structures and biochemical compositions were used: Pseudomonas aeruginosa and Leuconostoc citreum. UV-C LED irradiation was applied at three UV doses (171 to 684 mJ/cm2) on both surface-spread cells and on 24-h biofilms and under controlled cell loads, and bacterial survival was determined. All surface-spread bacteria, between 105 and 109 CFU/cm2, and biofilms at 108 CFU/cm2 showed that bacterial response to irradiation was dose-dependent. The treatment efficacy decreased significantly for L. citreum surface-spread cells when the initial cell load was high, while no load effect was observed for P. aeruginosa. Inactivation was also reduced when bacteria were grown under a biofilm form, especially for P. aeruginosa: a protective effect could be attributed to abundant extracellular DNA and proteins in the matrix of P. aeruginosa biofilms, as revealed by Confocal Laser Scanning Microscopy observations. This study showed that initial cell load and exopolymeric substances are major factors influencing UV-C LED antibiofilm treatment efficacy. KEY POINTS: • Bacterial cell load (CFU/cm2) could impact UV-C LED irradiation efficiency • Characteristics of the biofilm matrix have a paramount importance on inactivation • The dose to be applied can be predicted based on biofilm properties.


Asunto(s)
Biopelículas , Desinfección , Matriz Extracelular , Bacterias , Matriz Extracelular de Sustancias Poliméricas , Pseudomonas aeruginosa
9.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38610253

RESUMEN

Confronting the challenge of biofilm resistance and widespread antimicrobial resistance (AMR), this study emphasizes the need for innovative monitoring methods and explores the potential of bacteriophages against bacterial biofilms. Traditional methods, like optical density (OD) measurements and confocal microscopy, crucial in studying biofilm-virus interactions, often lack real-time monitoring and early detection capabilities, especially for biofilm formation and low bacterial concentrations. Addressing these gaps, we developed a new real-time, label-free radiofrequency sensor for monitoring bacteria and biofilm growth. The sensor, an open-ended coaxial probe, offers enhanced monitoring of bacterial development stages. Tested on a biological model of bacteria and bacteriophages, our results indicate the limitations of traditional OD measurements, influenced by factors like sedimented cell fragments and biofilm formation on well walls. While confocal microscopy provides detailed 3D biofilm architecture, its real-time monitoring application is limited. Our novel approach using radio frequency measurements (300 MHz) overcomes these shortcomings. It facilitates a finer analysis of the dynamic interaction between bacterial populations and phages, detecting real-time subtle changes. This method reveals distinct phases and breakpoints in biofilm formation and virion interaction not captured by conventional techniques. This study underscores the sensor's potential in detecting irregular viral activity and assessing the efficacy of anti-biofilm treatments, contributing significantly to the understanding of biofilm dynamics. This research is vital in developing effective monitoring tools, guiding therapeutic strategies, and combating AMR.


Asunto(s)
Bacteriófagos , Infecciones por Pseudomonas , Animales , Pseudomonas aeruginosa , Conducta Predatoria , Biopelículas
10.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612931

RESUMEN

Citrocin is an anti-microbial peptide that holds great potential in animal feed. This study evaluates the anti-microbial and anti-biofilm properties of Citrocin and explores the mechanism of action of Citrocin on the biofilm of P. aeruginosa. The results showed that Citrocin had a significant inhibitory effect on the growth of P. aeruginosa with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.3 mg/mL. All five concentrations (1/4MIC, 1/2MIC, MIC, 2MIC, and 4MIC) of Citrocin inhibited P. aeruginosa biofilm formation. Citrocin at the MIC, 2MIC and 4MIC removed 42.7%, 76.0% and 83.2% of mature biofilms, respectively, and suppressed the swarming motility, biofilm metabolic activity and extracellular polysaccharide production of P. aeruginosa. Metabolomics analysis indicated that 0.3 mg/mL of Citrocin up- regulated 26 and down-regulated 83 metabolites, mainly comprising amino acids, fatty acids, organic acids and sugars. Glucose and amino acid metabolic pathways, including starch and sucrose metabolism as well as arginine and proline metabolism, were highly enriched by Citrocin. In summary, our research reveals the anti-biofilm mechanism of Citrocin at the metabolic level, which provides theoretical support for the development of novel anti-biofilm strategies for combatting P. aeruginosa.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Polisacáridos , Almidón , Aminoácidos , Biopelículas , Péptidos
11.
Sci Rep ; 14(1): 8598, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615146

RESUMEN

Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.


Asunto(s)
Ciprofloxacina , Infecciones por Pseudomonas , Humanos , Ciprofloxacina/farmacología , Pseudomonas aeruginosa/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Antibacterianos/farmacología , Placas Óseas
12.
Microb Pathog ; 190: 106639, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38616002

RESUMEN

BACKGROUND INFORMATION: The advancement of biological-mediated nanoscience towards higher levels and novel benchmarks is readily apparent, owing to the use of non-toxic synthesis processes and the incorporation of various additional benefits. This study aimed to synthesize stable tin oxide nanoparticles (SnO2-NPs) using S. rhizophila as a mediator. METHODS: The nanoparticles that were created by biosynthesis was examined using several analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). RESULTS: The results obtained from the characterization techniques suggest that S. rhizophila effectively catalyzed the reduction of SnCl2 to SnO2-NPs duration of 90 min at ambient temperature with the ƛmax of 328 nm. The size of the nano crystallite formations was measured to be 23 nm. The present study investigates nanoscale applications' antibacterial efficacy against four bacterial strains, including Klebsiella Sp, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The observed zone of inhibition for the nanoparticles (NPs) varied from 10 to 25 mm. The research findings demonstrate that the nanoparticles (NPs) are effective as antibacterial, phytotoxic, and cytotoxic agents.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Compuestos de Estaño , Difracción de Rayos X , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Bacterias/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Microscopía Electrónica de Transmisión , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
13.
BMC Pulm Med ; 24(1): 172, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600466

RESUMEN

BACKGROUND: Bronchiectasis is a pulmonary disease characterized by irreversible dilation of the bronchi and recurring respiratory infections. Few studies have described the microbiology and prevalence of infections in large patient populations outside of specialized tertiary care centers. METHODS: We used the Cerner HealthFacts Electronic Health Record database to characterize the nature, burden, and frequency of pulmonary infections among persons with bronchiectasis. Chronic infections were defined based on organism-specific guidelines. RESULTS: We identified 7,749 patients who met our incident bronchiectasis case definition. In this study population, the organisms with the highest rates of isolate prevalence were Pseudomonas aeruginosa with 937 (12%) individuals, Staphylococcus aureus with 502 (6%), Mycobacterium avium complex (MAC) with 336 (4%), and Aspergillus sp. with 288 (4%). Among persons with at least one isolate of each respective pathogen, 219 (23%) met criteria for chronic P. aeruginosa colonization, 74 (15%) met criteria for S. aureus chronic colonization, 101 (30%) met criteria for MAC chronic infection, and 50 (17%) met criteria for Aspergillus sp. chronic infection. Of 5,795 persons with at least two years of observation, 1,860 (32%) had a bronchiectasis exacerbation and 3,462 (60%) were hospitalized within two years of bronchiectasis diagnoses. Among patients with chronic respiratory infections, the two-year occurrence of exacerbations was 53% and for hospitalizations was 82%. CONCLUSIONS: Patients with bronchiectasis experiencing chronic respiratory infections have high rates of hospitalization.


Asunto(s)
Bronquiectasia , Infecciones por Pseudomonas , Infecciones del Sistema Respiratorio , Humanos , Estados Unidos/epidemiología , Antibacterianos/uso terapéutico , Infección Persistente , Staphylococcus aureus , Registros Electrónicos de Salud , Bronquiectasia/epidemiología , Bronquiectasia/complicaciones , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones del Sistema Respiratorio/complicaciones , Complejo Mycobacterium avium , Pseudomonas aeruginosa
14.
Ann Clin Microbiol Antimicrob ; 23(1): 31, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600513

RESUMEN

BACKGROUND: Anti-virulence therapy is a promising strategy to treat multi-drug resistant (MDR) pathogens. Pseudomonas aeruginosa is a potent opportunistic pathogen because of an array of virulence factors that are regulated by quorum sensing systems. METHODS: The virulence features of four multi-drug resistant P. aeruginosa strains were investigated upon exposure to the sub-lethal dose of gamma rays (1 kGy), and sub-inhibitory concentrations of bioactive metabolites recovered from local halophilic strains in comparison to control. Then, the gene expression of AHL-mediated quorum sensing systems (las/rhl) was quantitatively determined in treated and untreated groups by real-time PCR. RESULTS: The bioactive metabolites recovered from halophilic strains previously isolated from saline ecosystems were identified as Halomonas cupida (Halo-Rt1), H. elongate (Halo-Rt2), Vigibacillus natechei (Halo-Rt3), Sediminibacillus terrae (Halo-Rt4) and H. almeriensis (Halo-Rt5). Results revealed that both gamma irradiation and bioactive metabolites significantly reduced the virulence factors of the tested MDR strains. The bioactive metabolites showed a maximum efficiency for inhibiting biofilm formation and rhamnolipids production whereas the gamma irradiation succeeded in decreasing other virulence factors to lower levels in comparison to control. Quantitative-PCR results showed that AHL-mediated quorum sensing systems (las/rhl) in P. aeruginosa strains were downregulated either by halo-bacterial metabolites or gamma irradiation in all treatments except the upregulation of both lasI internal gene and rhlR intact gene in P. aeruginosa NCR-RT3 and both rhlI internal gene and rhlR intact gene in P. aeruginosa U3 by nearly two folds or more upon exposure to gamma irradiation. The most potent result was observed in the expression of lasI internal gene that was downregulated by more than ninety folds in P. aeruginosa NCR-RT2 after treatment with metabolites of S. terrae (Halo-Rt4). Analyzing metabolites recovered from H. cupida (Halo-Rt1) and H. elongate (Halo-Rt2) using LC-ESI-MS/MS revealed many chemical compounds that have quorum quenching properties including glabrol, 5,8-dimethoxyquinoline-2-carbaldehyde, linoleoyl ethanolamide, agelasine, penigequinolones derivatives, berberine, tetracosanoic acid, and liquidambaric lactone in the former halophile and phloretin, lycoctonine, fucoxanthin, and crassicauline A in the latter one. CONCLUSION: QS inhibitors can significantly reduce the pathogenicity of MDR P. aeruginosa strains; and thus can be an effective and successful strategy for treating antibiotic resistant traits.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Humanos , Percepción de Quorum/genética , Biopelículas , Ecosistema , Espectrometría de Masas en Tándem , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica
15.
Antimicrob Resist Infect Control ; 13(1): 37, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600535

RESUMEN

INTRODUCTION: Antimicrobial resistance (AMR) is a pressing global health concern, particularly pronounced in low-resource settings. In Ethiopia, the escalating prevalence of carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) poses a substantial threat to public health. METHODS: A comprehensive search of databases, including PubMed, Scopus, Embase, Hinari, and Google Scholar, identified relevant studies. Inclusion criteria encompassed observational studies reporting the prevalence of meropenem-resistant P. aeruginosa in Ethiopia. Quality assessment utilized JBI checklists. A random-effects meta-analysis pooled data on study characteristics and prevalence estimates, with subsequent subgroup and sensitivity analyses. Publication bias was assessed graphically and statistically. RESULTS: Out of 433 studies, nineteen, comprising a total sample of 11,131, met inclusion criteria. The pooled prevalence of meropenem-resistant P. aeruginosa was 15% (95% CI: 10-21%). Significant heterogeneity (I2 = 83.6%) was observed, with the number of P. aeruginosa isolates identified as the primary source of heterogeneity (p = 0.127). Subgroup analysis by infection source revealed a higher prevalence in hospital-acquired infections (28%, 95% CI: 10, 46) compared to community settings (6%, 95% CI: 2, 11). Geographic based subgroup analysis indicated the highest prevalence in the Amhara region (23%, 95% CI: 8, 38), followed by Addis Ababa (21%, 95% CI: 11, 32), and lower prevalence in the Oromia region (7%, 95% CI: 4, 19). Wound samples exhibited the highest resistance (25%, 95% CI: 25, 78), while sputum samples showed the lowest prevalence. Publication bias, identified through funnel plot examination and Egger's regression test (p < 0.001), execution of trim and fill analysis resulted in an adjusted pooled prevalence of (3.7%, 95% CI: 2.3, 9.6). CONCLUSION: The noteworthy prevalence of meropenem resistance among P. aeruginosa isolates in Ethiopia, particularly in healthcare settings, underscores the urgency of implementing strict infection control practices and antibiotic stewardship. Further research is imperative to address and mitigate the challenges posed by antimicrobial resistance in the country.


Asunto(s)
Antiinfecciosos , Infecciones por Pseudomonas , Humanos , Etiopía/epidemiología , Meropenem/farmacología , Prevalencia , Pseudomonas aeruginosa , Infecciones por Pseudomonas/epidemiología , Farmacorresistencia Bacteriana
16.
PLoS Pathog ; 20(4): e1012154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603707

RESUMEN

Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.


Asunto(s)
Biopelículas , Candida albicans , Fibrosis Quística , Proteínas Fúngicas , Factores de Transcripción , Fibrosis Quística/microbiología , Candida albicans/genética , Candida albicans/metabolismo , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación con Ganancia de Función , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pulmón/microbiología , Candidiasis/microbiología , Adaptación Fisiológica
17.
PLoS One ; 19(4): e0296542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626002

RESUMEN

The emergence and spread of multidrug-resistant pathogens like Pseudomonas aeruginosa are major concerns for public health worldwide. This study aimed to assess the prevalence of P. aeruginosa in clinical, environmental, and poultry sources in Bangladesh, along with their antibiotic susceptibility and the profiling of ß-lactamase and virulence genes using standard molecular and microbiology techniques. We collected 110 samples from five different locations, viz., BAU residential area (BAURA; n = 15), BAU Healthcare Center (BAUHCC; n = 20), BAU Veterinary Teaching Hospital (BAUVTH; n = 22), Poultry Market (PM; n = 30) and Mymensingh Medical College Hospital (MCCH; n = 23). After overnight enrichment in nutrient broth, 89 probable Pseudomonas isolates (80.90%) were screened through selective culture, gram-staining and biochemical tests. Using genus- and species-specific PCR, we confirmed 22 isolates (20.0%) as P. aeruginosa from these samples. Antibiogram profiling revealed that 100.0% P. aeruginosa isolates (n = 22) were multidrug-resistant isolates, showing resistance against Doripenem, Penicillin, Ceftazidime, Cefepime, and Imipenem. Furthermore, resistance to aztreonam was observed in 95.45% isolates. However, P. aeruginosa isolates showed a varying degree of sensitivity against Amikacin, Gentamicin, and Ciprofloxacin. The blaTEM gene was detected in 86.0% isolates, while blaCMY, blaSHV and blaOXA, were detected in 27.0%, 18.0% and 5.0% of the P. aeruginosa isolates, respectively. The algD gene was detected in 32.0% isolates, whereas lasB and exoA genes were identified in 9.0% and 5.0% P. aeruginosa isolates. However, none of the P. aeruginosa isolates harbored exoS gene. Hence, this study provides valuable and novel insights on the resistance and virulence of circulating P. aeruginosa within the clinical, environmental, and poultry environments of Bangladesh. These findings are crucial for understanding the emergence of ß-lactamase resistance in P. aeruginosa, highlighting its usefulness in the treatment and control of P. aeruginosa infections in both human and animal populations.


Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Humanos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , beta-Lactamasas/genética , beta-Lactamasas/uso terapéutico , Virulencia/genética , Hospitales Veterinarios , Bangladesh , Aves de Corral , Hospitales de Enseñanza , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
18.
Toxicon ; 242: 107708, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574827

RESUMEN

Hepatocellular carcinoma and bacterial resistance are major health burdens nowadays. Thus, providing new therapies that overcome that resistance is of great interest, particularly those derived from nature rather than chemotherapeutics to avoid cytotoxicity on normal cells. Venomous animals are among the natural sources that assisted in the discovery of novel therapeutic regimens. L-amino acid oxidase Nh-LAAO (140 kDa), purified from Egyptian Naja haje venom by a successive two-step chromatography protocol, has an optimal pH and temperature of 8 and 37 °C. Under standard assay conditions, Nh-LAAO exhibited the highest specificity toward L-Arg, L-Met and L-Leu, with Km and Vmax values of 3.5 mM and 10.4 µmol/min/ml, respectively. Among the metal ions, Ca+2, Na+, and K+ ions are activators, whereas Fe+2 inhibited LAAO activity. PMSF and EDTA slightly inhibited the Nh-LAAO activity. In addition, Nh-LAAO showed antibacterial and antifungal activities, particularly against Gentamicin-resistant P. aeruginosa and E. coli strains with MIC of 18 ± 2 µg/ml, as well as F. proliferatum and A. parasiticus among the selected human pathogenic strains. Furthermore, Nh-LAAO exhibited anti-proliferative activity against cancer HepG2 and Huh7 cells with IC50 of 79.37 and 60.11 µg/ml, respectively, with no detectable effect on normal WI-38 cells. Consequently, the apoptosis % of the HepG2 and Huh7 cells were 12 ± 1 and 34.5 ± 2.5 %, respectively, upon Nh-LAAO treatment. Further, the Nh-LAAO arrested the HepG2 and Huh7 cell cycles in the G0/G1 phase. Thus, the powerful selective cytotoxicity of L-amino acid oxidase opens up the possibility as a good candidate for clinical cancer therapy.


Asunto(s)
Antineoplásicos , Venenos Elapídicos , L-Aminoácido Oxidasa , L-Aminoácido Oxidasa/farmacología , L-Aminoácido Oxidasa/química , Animales , Humanos , Antineoplásicos/farmacología , Venenos Elapídicos/farmacología , Venenos Elapídicos/química , Células Hep G2 , Naja naja , Línea Celular Tumoral , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Egipto , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos
19.
Sci Rep ; 14(1): 8310, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594467

RESUMEN

Bacterial resistance surveillance is one of the main outputs of microbiological laboratories and its results are important part of antimicrobial stewardship (AMS). In this study, the susceptibility of specific bacteria to selected antimicrobial agents was tested. The susceptibility of 90 unique isolates of pathogens of critical priority obtained from clinically valid samples of ICU patients in 2017-2021 was tested. 50% of these fulfilled difficult-to-treat resistance (DTR) criteria and 50% were susceptible to all antibiotics included in the definition. 10 Enterobacterales strains met DTR criteria, and 2 (20%) were resistant to colistin (COL), 2 (20%) to cefiderocol (FCR), 7 (70%) to imipenem/cilastatin/relebactam (I/R), 3 (30%) to ceftazidime/avibactam (CAT) and 5 (50%) to fosfomycin (FOS). For Enterobacterales we also tested aztreonam/avibactam (AZA) for which there are no breakpoints yet. The highest MIC of AZA observed was 1 mg/l, MIC range in the susceptible cohort was 0.032-0.064 mg/l and in the DTR cohort (incl. class B beta-lactamase producers) it was 0.064-1 mg/l. Two (13.3%) isolates of Pseudomonas aeruginosa (15 DTR strains) were resistant to COL, 1 (6.7%) to FCR, 13 (86.7%) to I/R, 5 (33.3%) to CAT, and 5 (33.3%) to ceftolozane/tazobactam. All isolates of Acinetobacter baumannii with DTR were susceptible to COL and FCR, and at the same time resistant to I/R and ampicillin/sulbactam. New antimicrobial agents are not 100% effective against DTR. Therefore, it is necessary to perform susceptibility testing of these antibiotics, use the data for surveillance (including local surveillance) and conform to AMS standards.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Cefalosporinas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Aztreonam , 60607 , Bacterias Gramnegativas , Colistina/farmacología , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
20.
ACS Appl Mater Interfaces ; 16(15): 18360-18385, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573741

RESUMEN

Bacterial keratitis (BK) causes visual morbidity/blindness if not treated effectively. Here, ciprofloxacin (CIP)-loaded nanoparticles (NPs) using glycol chitosan (GC) and poly(lactic acid) (PLA) conjugate at three different ratios (CIP@GC(PLA) NPs (1:1,5,15)) were fabricated. CIP@GC(PLA) NPs (1:1) were more effective than other tested ratios, indicating the importance of optimal hydrophobic/hydrophilic balance for corneal penetration and preventing bacterial invasion. The CIP@GC(PLA) (NPs) (1:1) realized the highest association with human corneal epithelial cells, which were nonirritant to the hen's egg-chorioallantoic membrane test (HET-CAM test) and demonstrated significant antibacterial response in the in vitro minimum inhibitory, bactericidal, live-dead cells, zone of inhibition, and biofilm inhibition assays against the keratitis-inducing pathogen Pseudomonas aeruginosa. The antiquorum sensing activity of GC has been explored for the first time. The NPs disrupted the bacterial quorum sensing by inhibiting the production of virulence factors, including acyl homoserine lactones, pyocyanin, and motility, and caused significant downregulation of quorum sensing associated genes. In the in vivo studies, CIP@GC(PLA) NPs (1:1) displayed ocular retention in vivo (∼6 h) and decreased the opacity and the bacterial load effectively. Overall, the CIP@GC(PLA) NP (1:1) is a biofilm-disrupting antiquorum sensing treatment regimen with clinical translation potential in BK.


Asunto(s)
Quitosano , Infecciones Bacterianas del Ojo , Queratitis , Nanopartículas , Animales , Femenino , Humanos , Ciprofloxacina/farmacología , Pollos , Biopelículas , Antibacterianos/farmacología , Poliésteres/farmacología , Percepción de Quorum , Bacterias , Pseudomonas aeruginosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...